[image: ]

Introduction to the Zig Programming Language
Course Number: PROG-116
Duration: 3 days
Overview
Zig is a general-purpose programming language and toolchain for creating robust, optimal, and reusable software. Zig improves on C with its customized memory control, null reference protection, and required error handling. Unlike Rust, Zig allows low-level memory control with syntax and memory model features to help avoid memory leaks. Finally, it provides interoperability with existing C libraries.
This Zig Programming training course teaches attendees how to leverage Zig's data types, control flow structures, code organization, memory management, and more.
Prerequisites
All students must have programming experience.
Materials
All Zig Programming training students receive comprehensive courseware.
Software Needed on Each Student PC
A complete, remote virtual environment is provided for training and is accessible via the Internet from any modern web browser.
Objectives
· Build and run Zig programs
· Explore features unique to Zig that set it apart from other languages
· Understand where Zig is a good choice for writing software
· Work with the Zig toolchain
· Explore how Zig can be used as a drop-in replacement for C
· Discover how Zig enables performance and safety
· Apply modern techniques for memory control, null reference handling, and error handling with a lower-level language.
Outline
· Introduction 
· What is Zig?
· What Problems Does Zig solve?
· Zig Compared to C
· Zig Compared to Other Languages
· Zig Zen
· Getting Started 
· Zig Toolchain
· Hello, Zig!
· Code and Debug with VSCode
· Zig Standard Library
· Zig Source Files
· Cross Compilation
· Language Features in Hello Zig 
· Importing from the Standard Library
· Constants
· Define a Public “main” Function
· Try Statement
· Error Union Types
· String Interpolation
· Comments
· Zig Project Scaffolding 
· Create a New Executable Project
· Create a New Library Project
· Build and Run
· Build and Test
· Console Apps 
· Print Output to the Terminal
· Format Specifiers
· Anonymous Struct Literals
· Capture Input from the Terminal
· String Comparison
· While Loop
· Error Handling
· Data Types 
· Integers
· Floats
· Arrays
· Pointers
· Slices
· Data Structures 
· Struct
· Enum
· Union
· Variables 
· Variable Name Rules
· Container Level Variables
· Compile-Time vs. Run-Time Variables
· Local Variables
· Control Flow 
· Expressions and Operators
· While/For Loops
· Break/Continue Statements
· If Statement
· Switch Statement
· Try/Catch Statement
· Defer/ErrDefer Statement
· Functions 
· What is a Function?
· Define a Function
· Call a Function
· Pass Parameters to a Function
· Immutable vs Mutable Parameters
· Importing Functions from Other Zig Code Files
· Strings 
· UTF-8 Data Type
· Character Arrays
· Buffers
· Print Formatted Strings
· Capture Strings Console Input
· String Copy
· String Comparison
· Memory Control 
· Memory Allocation Philosophy
· Memory Control vs. Memory Safety
· Choosing an Allocators
· Heap Allocation Failure
· Lifetime and Ownership
· Optional and Optional Pointers
· Null References
· Program a Zig “Object” 
· Compared to C/C++/Python/JavaScript
· Anonymous Structs
· Anonymous Struct Literals
· Data Fields
· Constant Fields
· Error Enums
· Function Members
· Function Patterns
· Dynamic Memory Allocation
· Testing 
· Zig’s built-in testing
· What can be tested?
· Assert Output with Expect
· Conclusion

Copyright ©2003-2024 Accelebrate, LLC. Some outlines may contain content from our courseware partners; such content is protected by these partners' copyrights. All trademarks are owned by their respective owners.
image1.png
Accelebrat&%g

ACCELERATED LEARNING, CELEBRATED RESULTS ®




