[image: ]

Secure Coding in C and C++ for Medical Devices
Course Number: SEC-136
Duration: 4 days
Overview
This Secure Coding in C and C++ for Medical Devices training teaches attendees essential cyber security concepts in the context of the healthcare sector. Students learn secure code best practices in C and C++ and how to leverage common security testing techniques to prevent data breaches.
Note: To ensure ample one-on-one engagement with the instructor, this class is capped at 12 people, overriding Accelebrate’s default cap of 15.
Prerequisites
All students must have general C/C++ development knowledge.
Materials
All Medical Device Secure Coding training attendees receive comprehensive courseware.
Software Needed on Each Student PC
Attendees will not need to install any software on their computers for this class. The class will be conducted in a remote environment that Accelebrate will provide; students will only need a local computer with a web browser and a stable Internet connection. Any recent version of Microsoft Edge, Mozilla Firefox, or Google Chrome will work well.
Objectives
· Get familiar with essential cyber security concepts
· Learn about security specialties of the healthcare sector
· Handle security challenges in your C and C++ code
· Identify vulnerabilities and their consequences
· Learn security best practices in C and C++
· Understand security testing methodology and approaches
· Get familiar with common security testing techniques and tools
Outline
· Introduction
· Cyber Security Basics 
· What is security?
· Threat and risk
· Cyber security threat types
· Consequences of insecure software 
· Constraints and the market
· The dark side
· Regulations and standards 
· Regulations for healthcare information systems
· Regulations for medical devices
· Cyber security in the healthcare sector 
· Threats and trends in healthcare
· Threats to medical devices
· The problem of legacy systems
· Buffer Overflow 
· Assembly basics and calling conventions 
· x64 assembly essentials
· Registers and addressing
· Most common instructions
· Calling conventions on x64
· Memory management vulnerabilities 
· Memory management and security
· Vulnerabilities in the real world
· Buffer security issues
· Buffer overflow on the stack
· Buffer overflow on the heap
· Pointer manipulation
· Best practices and some typical mistakes 
· Unsafe functions
· Dealing with unsafe functions
· What’s the problem with asctime()?
· Using std::string in C++
· Some typical mistakes leading to BOF 
· Unterminated strings
· readlink() and string termination
· Manipulating C-style strings in C++
· Malicious string termination
· String length calculation mistakes
· Off-by-one errors
· Off-by-one error in VxWorks TCP ‘Urgent Data’ parsing
· Allocating nothing
· Common Software Security Weaknesses 
· Security features 
· Authentication
· Password management
· Input validation principles
· Blacklists and whitelists
· Data validation techniques
· Case study: Missing input validation in Natus Xltek NeuroWorks 8
· What to validate: the attack surface
· Where to validate: defense in depth
· How to validate: validation vs transformations
· Output sanitization
· Encoding challenges
· Validation with regex
· Injection 
· Injection principles
· Injection attacks
· Code injection
· Integer handling problems 
· Representing signed numbers
· Integer visualization
· Integer promotion
· Integer overflow
· Signed / unsigned confusion
· Integer truncation
· Case study: WannaCry
· Best practices
· Files and streams 
· Path traversal
· Path traversal-related examples
· Path traversal best practices
· Format string issues 
· The problem with printf()
· Time and state 
· Race conditions
· Errors 
· Error and exception handling principles
· Error handling
· Exception handling
· Code quality 
· Data handling
· Control flow
· Signal handling
· Object oriented programming pitfalls
· Memory and pointers
· File I/O
· Using Vulnerable Components 
· Assessing the environment
· Hardening
· Case study: Supply chain attack on Alaris Gateway Workstation
· Vulnerability management 
· Patch management
· Bug bounty programs
· Vulnerability databases
· Vulnerability rating – CVSS
· DevOps, the build process and CI / CD
· Insecure compiler optimization
· Security Testing 
· Security testing vs functional testing
· Manual and automated methods
· Security testing techniques and tools 
· Code analysis
· Dynamic analysis
· Wrap Up 
· Secure coding principles 
· Principles of robust programming by Matt Bishop
· Secure design principles of Saltzer and Schröder
· And now what? 
· Software security sources and further reading
· C and C++ resources
· Conclusion

Copyright ©2003-2024 Accelebrate, LLC. Some outlines may contain content from our courseware partners; such content is protected by these partners' copyrights. All trademarks are owned by their respective owners.
image1.png

