[image: ]

Introduction to React using TypeScript
Course Number: RCT-116
Duration: 3 days
Overview
React is a JavaScript library for building web user interfaces and is one of the most wanted and loved web frameworks today. React makes it painless to create interactive UIs on top of web standards.
In this Introduction to React using TypeScript training course, students will gain hands-on experience with the latest version of React and the tools for developing React applications. Developers learn the skills they need to immediately build React applications using the TypeScript language.
Note: This React class can also be taught using JavaScript/ECMAScript.
Prerequisites
Students must have object-oriented programming experience. Some experience with JavaScript is helpful; the new language features of JavaScript and TypeScript are covered/reviewed in class.
Materials
All React training attendees receive comprehensive courseware.
Software Needed on Each Student PC
· Google Chrome and/or Firefox
· Other modern browsers as desired
· IDE/development environment of your choice
· Other free software and lab files that Accelebrate would specify, including Node.js
Objectives
· Use a JavaScript package manager (either npm or Yarn)
· Understand the new JavaScript language features, including classes, modules, and arrow functions
· Use TypeScript to enable additional language features including static typing and generics
· Articulate what React is and why it is useful
· Explore the basic architecture of a React application
· Gain a deep understanding of JSX and the Virtual DOM
· Use React components to build interactive interfaces
· Create and validate forms using controlled components
· Make HTTP calls to read or change data
· Explore the common component architecture patterns
· Configure simple and complex routing
· Learn React best practices
Outline
· Introduction
· Package Manager (npm/Yarn) 
· npm 
· What is Node.js?
· What is npm?
· Using npm
· npm Scripts
· Yarn 
· Why Yarn?
· npm vs. Yarn
· Installation
· Using Yarn
· Compiler Setup 
· Setup TypeScript Compiler (tsc)
· ES6/ES2015 
· Classes
· Scope (var, let, const)
· Arrow Functions
· Modules
· Template Literals
· Default, Rest, Spread
· Default
· Rest
· Spread
· Destructuring
· Optional Parameters
· Object.assign()
· Object Initializer
· TypeScript 
· Understanding TypeScript, ES6, and ES5
· How TypeScript Works
· Who is Behind TypeScript?
· Type Annotations
· Classes 
· Fields
· Parameter Properties
· Member visibility (public, private, protected)
· Automatically Import Modules
· Nullable Parameters
· Interfaces
· Project Setup (Create React App) 
· Create new Project
· Folder Structure
· Browser Support
· Styles and Assets
· Dependencies
· Best Practices (Code Organization & Conventions)
· React Overview 
· Why React?
· What it is?
· Why it is useful?
· Angular, React Compared
· Web application architectures 
· Server-side web application architecture
· Single-page web application architecture
· React Architecture
· Elements 
· Hello World in JavaScript
· Hello World in React
· JSX 
· Replacing createElement
· Embedding Expressions
· Specifying Attributes
· Virtual DOM
· Components 
· Creating an Element
· Create a Function Component
· Rendering a Component
· Creating a Class Component
· Composing & Reuse
· Props 
· Read-only
· String Literals vs. Expressions
· Function vs. Class Components
· Events 
· Listening/Subscribing/Wiring to an Event
· In Vanilla JavaScript
· In React: Function Component
· In React: Class Component
· Binding 
· Why Binding is Necessary?
· Class Method
· Arrow Function
· Passing Parameters 
· Using Arrow Functions
· Using Bind
· Handling Events 
· Using Arrow Functions
· Using Bind
· Synthetic Events
· Hooks 
· Definition
· Why Hooks?
· No Breaking Changes
· Hooks API: useState, useEffect, useRef, useContext
· Rules of Hooks
· State 
· Definition
· State in Function Components
· useState Hook
· State in Class Components
· Mutating state with setState
· Using State Correctly
· Data Flows Down
· Side Effects & Lifecycle 
· useEffect Hook
· What does useEffect do?
· Using useEffect
· useEffect Demo
· What are Lifecycle Methods
· Understanding Mounting
· Common vs. Less Common Methods
· Using Lifecycle Methods
· React with TypeScript 
· Installation/Setup
· Props Interfaces
· State Interfaces
· Typing Event Handlers
· Conditional Rendering 
· If, else
· Conditional Operator (?)
· Logical (&&) Operator
· Lists 
· In Vanilla JavaScript: for loop, array.forEach, array.map
· In React: using Elements, Components
· Why Keys are Needed
· Component Architecture 
· Reuse
· Component Communication
· Design Patterns 
· Container and Presentation Components
· Composition vs. Inheritance
· Forms 
· Controlled Components
· Reuse of Change Logic across Multiple Inputs
· Handling Form Submission
· Controlling Other Form Elements: select, textarea, number
· Validation
· Uncontrolled Components
· HTTP 
· Axios library
· Fetch API
· Using with React (HTTP GET)
· Refactoring for Reuse
· HTTP POST, PUT, DELETE
· Routing (React Router) 
· Installation
· Basics
· Handling Not Found (404) (as time permits)
· Parameters (Url & Query) (as time permits)
· Nesting (as time permits)
· Hooks 
· Defined
· Why Hooks?
· No Breaking API Changes
· Hooks API
· useState
· useEffect
· Custom Hooks
· Rules of Hooks
· Build & Deploy (as time permits) 
· Building a React Application for Production
· Deploying a React Application
· Serving Apps with Client-Side Routing
· Customizing Environment Variables
· Conclusion

Copyright ©2003-2024 Accelebrate, LLC. Some outlines may contain content from our courseware partners; such content is protected by these partners' copyrights. All trademarks are owned by their respective owners.
image1.png
Accelebrat&%g

ACCELERATED LEARNING, CELEBRATED RESULTS ®




