[image: ]

Functional Programming in Kotlin with Arrow
Course Number: MBL-230
Duration: 2 days
Overview
This Functional Programming in Kotlin with Arrow training course teaches developers how to enhance their functional Kotlin programming skills and get the most out of additional capabilities provided by the Arrow library.
Prerequisites
All attendees must have several years of Kotin development experience. They must have experience applying the standard FP operators (filter, map, flatMap, reduce, etc.) to solve real-world problems.
Materials
All attendees receive comprehensive courseware.
Course outline and materials are copyrighted and owned by Instil Software.
Software Needed on Each Student PC
· Windows or Mac minimum 8 GB RAM
· Android Studio installed
· Provided lab files from Accelebrate
Objectives
· Use advanced operations, such as Traversal and Applicatives
· Use functional types (such as Either, Validated, and State) to improve safety and maintainability.
· Use Optics to work with deeply nested immutable data
· Compose operations efficiently via suspending functions
· Design and implement sample applications, which follow the declarative and immutable FP style
· Implement algorithms using the more advanced FP operators, such as traverse and bimap
· Use effects to produce polymorphic programs that can be executed across multiple environments
Outline
· Introduction
· Kotlin FP Fundamentals (Optional) 
· Working with function references and lambdas
· Lambdas with receiver and patterns for DSL’s
· Declaring functions as parameters and return types
· Understanding Partial Invocation and Currying
· Choosing between code blocks and local functions
· Common misunderstandings regarding enclosure
· Advanced FP Concepts (Examples from Arrow 0.12) 
· Programming using Algebraic Data Types in Kotlin
· Adding operators to data structures via Typeclasses
· Abstracting generic types via Higher Kinded Types
· Functional composition and rules for monadic types
· Combining different monadic types via Transformers
· Functional Types Supported in Arrow 
· The Identity type and situations where it is useful
· Why the Option and Try types are not needed in Kotlin
· Modeling exceptions and cached/default values via Either
· Collecting errors via the Validated type and Semigroups
· Using the Reader type to build a record across invocations
· Using the State / Writer type to pass data between calls
· Arrow wrappers to Kotlin collections and NonEmptyList
· Additional Operators Supported by Arrow 
· Inverting collections of monadic types via traverse
· Using Applicatives to handle multiple type instances
· Composition in Arrow using suspending functions
· Kleisli as an alternative means of composition
· Applying fold, bimap, and swap to Monadic Types
· Manipulating Immutable Data with Optics 
· Problems posed by deep nesting in immutable collections
· Advantages and limits of data classes and the copy method
· Using Optics to focus on specific fields in nested data
· Different forms of Lens in Arrow, and how to create them
· Maintaining codebases that use the Optics library heavily
· Building Purely Functional Designs with Effects 
· Why pure functions are desirable but side effects inevitable
· How the IO type can be used to separate pure from impure code
· Effects libraries, delimited continuations, and effectful coding
· Understanding Polymorphic Programs within functional designs
· How Arrow 1.x uses suspending functions instead of an IO type
· Emerging patterns for building applications using Effects
· Conclusion

Copyright ©2003-2024 Accelebrate, LLC. Some outlines may contain content from our courseware partners; such content is protected by these partners' copyrights. All trademarks are owned by their respective owners.
image1.png
Accelebrat&%g

ACCELERATED LEARNING, CELEBRATED RESULTS ®




