[image: ]

Comprehensive C# and Web Application Security
Course Number: SEC-128
Duration: 5 days
Overview
Accelebrate's Comprehensive C# and Web Application Security training takes attendees through the common Web application security issues following the OWASP Top Ten and beyond. This security course is taught in C# and discusses core programming issues, including the security pitfalls of the C# language and the ASP.NET framework.
Note: To ensure ample one-on-one engagement with the instructor, this class is capped at 12 people, overriding Accelebrate’s default cap of 15.
Prerequisites
Students should have solid C# and web application development skills.
Materials
All secure coding attendees receive comprehensive courseware.
Software Needed on Each Student PC
Attendees will not need to install any software on their computers for this class. The class will be conducted in a remote environment that Accelebrate will provide; students will only need a local computer with a web browser and a stable Internet connection. Any recent version of Microsoft Edge, Mozilla Firefox, or Google Chrome will work well.
Objectives
All students will:
· Get familiar with essential cyber security concepts
· Understand Web application security issues
· Gain a detailed analysis of the OWASP Top Ten elements
· Put Web application security in the context of C#
· Go beyond the low hanging fruits
· Manage vulnerabilities in third-party components
· Identify vulnerabilities and their consequences
· Learn the security best practices in C#
· Learn input validation approaches and principles
· Understand how cryptography can support application security
· Learn how to use cryptographic APIs correctly in C#
· Understand security testing methodology and approaches
· Get familiar with common security testing techniques and tools
Outline
· Cyber security basics 
· What is security?
· Threat and risk
· Cyber security threat types
· Consequences of insecure software
· Introducing the OWASP Top 10
· A1 - Injection 
· Injection principles
· Injection attacks
· SQL injection
· NoSQL injection
· SQL injection best practices
· SQL injection protection and ORM
· Parameter manipulation
· Code injection
· Script injection
· General injection best practices
· Storing account passwords
· Password in transit
· Dictionary attacks and brute forcing
· Salting
· Adaptive hash functions for password storage
· A2 - Broken Authentication 
· Authentication
· Password management
· Session management
· Using tokens
· Cookie security
· A3 - Sensitive Data Exposure 
· Information exposure
· Exposure through extracted data and aggregation
· Case study – Strava data exposure
· Privacy violation
· System information leakage
· Information leakage through side channels
· Information exposure best practices
· A4 - XML External Entities (XXE) 
· DTD and the entities
· Attribute blowup
· Entity expansion
· External Entity Attack (XXE)
· A5 - Broken Access Control 
· Access control basics
· Failure to restrict URL access
· Confused deputy
· File upload
· A6 - Security Misconfiguration 
· Configuration principles
· Server misconfiguration
· ASP.NET and IIS configuration best practices
· AWS configuration best practices
· A7 - Cross-site Scripting (XSS) 
· Cross-site scripting basics
· Cross-site scripting types
· XSS protection best practices
· A8 - Insecure Deserialization 
· Serialization and deserialization challenges
· Integrity – deserializing untrusted streams
· Integrity – deserialization best practices
· Property Oriented Programming (POP)
· A9 - Using Components with Known Vulnerabilities 
· Using vulnerable components
· Assessing the environment
· Hardening
· Untrusted functionality import
· Importing JavaScript
· Case study – The British Airways data breach
· Vulnerability management
· A10 - Insufficient Logging & Monitoring 
· Logging and monitoring principles
· Insufficient logging
· Case study – Plaintext passwords at Facebook
· Logging best practices
· Monitoring best practices
· XML Security 
· XML validation
· XML injection
· JSON Security 
· JSON validation
· JSON injection
· Dangers of JSONP
· JSON/JavaScript hijacking
· Best practices
· Case study – ReactJS vulnerability in HackerOne
· Web Application Security Beyond the Top Ten 
· Client-side security
· Tabnabbing
· Reverse tabnabbing
· Frame sandboxing
· API security - Input validation 
· Integer handling problems
· Open redirects and forwards
· Files and streams
· Unsafe reflection
· Unsafe native code
· Time and state 
· Race conditions
· Errors 
· Error and exception handling principles
· Error handling
· Exception handling
· Code quality 
· Code quality and security
· Data handling
· Object-oriented programming pitfalls
· Denial of Service 
· Flooding
· Resource exhaustion
· Sustained client engagement
· Denial of service problems in C#
· Infinite loop
· Economic Denial of Sustainability (EDoS)
· Denial of service
· Algorithm complexity issues
· Cryptography for Developers 
· Cryptography basics
· Crypto APIs in C#
· Elementary Algorithms 
· Random number generation
· Hashing
· Confidentiality Protection 
· Symmetric encryption
· Asymmetric encryption
· Combining symmetric and asymmetric algorithms
· Key exchange and agreement
· Integrity Protection 
· Authenticity and non-repudiation
· Message Authentication Code (MAC)
· Digital signature
· Public Key Infrastructure (PKI) 
· Some further key management challenges
· Certificates
· Security testing 
· Security testing methodology
· Security testing techniques and tools
· Conclusion 
· Secure coding principles
· And now what?

Copyright ©2003-2024 Accelebrate, LLC. Some outlines may contain content from our courseware partners; such content is protected by these partners' copyrights. All trademarks are owned by their respective owners.
image1.png
Accelebrat&%g

ACCELERATED LEARNING, CELEBRATED RESULTS ®




