[image: ]

Desktop Application Security in C#
Course Number: SEC-148
Duration: 3 days
Overview
This Desktop Application Security in C# training teaches developers how to prevent common security issues in C# applications. Attendees go beyond core programming issues, exploring secure code pitfalls of the C# language and the .NET framework.
Note: To ensure ample one-on-one engagement with the instructor, this class is capped at 12 people, overriding Accelebrate’s default cap of 15.
Prerequisites
All secure coding students should have general C# and web application development experience.
Materials
All attendees receive comprehensive courseware.
Software Needed on Each Student PC
Attendees will not need to install any software on their computers for this class. The class will be conducted in a remote environment that Accelebrate will provide; students will only need a local computer with a web browser and a stable Internet connection. Any recent version of Microsoft Edge, Mozilla Firefox, or Google Chrome will work well.
Objectives
· Understand essential cyber security concepts
· Use input validation approaches and principles
· Identify vulnerabilities and their consequences
· Implement the security best practices in C#
· Understand how cryptography supports security
· Use cryptographic APIs correctly in C#
· Manage vulnerabilities in third-party components
Outline
· Introduction
· Cyber security basics 
· What is security?
· Threat and risk
· Cyber security threat types – the CIA triad
· Cyber security threat types – the STRIDE model
· Consequences of insecure software
· Input Validation 
· Input validation principles
· Denylists and allowlists
· What to validate – the attack surface
· Where to validate – defense in depth
· When to validate – validation vs transformations
· Validation with regex
· Injection
· Integer handling problems 
· Representing signed numbers
· Integer visualization
· Integer overflow
· Signed/unsigned confusion
· The Stockholm Stock Exchange
· Integer truncation
· Best practices
· Files and streams 
· Path traversal
· Additional challenges in Windows
· Virtual resources
· Path traversal best practices
· Path canonicalization
· Unsafe reflection 
· Reflection without validation
· Unsafe native code 
· Native code dependence
· Unsafe native code
· Best practices for dealing with native code
· Security Features 
· Authentication 
· Authentication basics
· Multi-factor authentication
· Authentication weaknesses
· Password management
· Information exposure 
· Exposure through extracted data and aggregation
· Strava data exposure
· Platform security 
· .NET platform security
· Errors 
· Error and exception handling principles
· Error handling 
· Returning a misleading status code
· Information exposure through error reporting
· Exception handling 
· In the catch block. And now what?
· Catching NullReferenceException
· Empty catch block
· Exception handling mess
· Denial of Service 
· Flooding
· Resource exhaustion
· Sustained client engagement
· Algorithm complexity issues 
· Regular expression denial of service (ReDoS)
· Cryptography for Developers 
· Cryptography basics
· Crypto APIs in C#
· Elementary algorithms 
· Random number generation
· Hashing
· Common Software Security Weaknesses 
· Symmetric encryption 
· Block ciphers
· Modes of operation
· Modes of operation and IV – best practices
· Symmetric encryption in C#
· Symmetric encryption in C# with streams
· Asymmetric encryption 
· The RSA algorithm
· Combining symmetric and asymmetric algorithms 
· Integrity protection
· Message Authentication Code (MAC) 
· Calculating HMAC in C#
· Digital signature 
· Digital signature with RSA
· Elliptic Curve Cryptography
· Code quality 
· Code quality and security
· Data handling
· Object-oriented programming pitfalls
· Serialization
· Using Vulnerable Components 
· The British Airways data breach
· Vulnerability management 
· Patch management
· Vulnerability databases
· Finding vulnerabilities in third-party components
· Conclusion 
· Secure coding principles 
· Principles of robust programming by Matt Bishop
· Secure design principles of Saltzer and Schroeder
· And now what? 
· Software security sources and further reading
· .NET and C# resources

Copyright ©2003-2024 Accelebrate, LLC. Some outlines may contain content from our courseware partners; such content is protected by these partners' copyrights. All trademarks are owned by their respective owners.
image1.png

