[image: ]

C and C++ Secure Coding
Course Number: SEC-126
Duration: 3 days
Overview
Accelebrate's C and C++ Secure Coding training teaches developers the common security weaknesses that allow hackers to attack systems and the best practices needed to prevent these attacks. Attendees learn core programming issues of C and C++ and identify potential security pitfalls and solutions.
Note: To ensure ample one-on-one engagement with the instructor, this class is capped at 12 people, overriding Accelebrate’s default cap of 15.
Prerequisites
All students must have C/C++ development experience.
Materials
All Secure Coding training attendees receive comprehensive courseware.
Software Needed on Each Student PC
Attendees will not need to install any software on their computers for this class. The class will be conducted in a remote environment that Accelebrate will provide; students will only need a local computer with a web browser and a stable Internet connection. Any recent version of Microsoft Edge, Mozilla Firefox, or Google Chrome will work well.
Objectives
All attendees will:
· Handle security challenges in your C and C++ code
· Identify vulnerabilities and their consequences
· Learn the security best practices in C and C++
Outline
· Cybersecurity Basics 
· What is security?
· Threat and risk
· Cybersecurity threat types
· Consequences of insecure software
· Constraints and the market
· The dark side
· Buffer Overflow 
· Assembly basics and calling conventions 
· x64 assembly essentials
· Registers and addressing
· Most common instructions
· Calling conventions on x64
· Memory management vulnerabilities 
· Memory management and security
· Vulnerabilities in the real world
· Buffer security issues 
· Buffer overflow on the stack
· Buffer overflow on the heap
· Pointer manipulation
· Some typical mistakes leading to BoF
· BoF protection best practices 
· Safe and unsafe functions
· base_string and std::string
· Some less-known dangerous functions
· Lab – Fixing buffer overflow
· Securing the toolchain
· Compiler options and instrumentation
· Stack smashing protection
· Runtime protection
· Address Space Layout Randomization (ASLR)
· Non-executable memory areas
· Common Software Security Weaknesses 
· Input validation 
· Input validation principles
· Injection 
· Injection principles
· Injection attacks
· Code injection
· Integer handling problems 
· Representing signed numbers
· Integer visualization
· Integer overflow
· Lab – Integer overflow
· Signed / unsigned confusion
· Lab – Signed / unsigned confusion
· Integer truncation
· Lab – Integer truncation
· Case study – Wannacry
· Best practices
· Other numeric problems 
· Division by zero
· Working with floating-point numbers
· Files and streams 
· Path traversal
· Path traversal-related examples
· Lab – Path traversal
· Link and shortcut following
· Virtual resources
· Path traversal best practices
· Format string issues 
· The problem with printf()
· Lab – Exploiting format string
· Time and State 
· Race conditions 
· Race condition in object data members
· File race condition
· Potential race condition
· Common Software Security Weaknesses 
· Security features 
· Authentication
· Password management
· Errors 
· Error and exception handling principles
· Error handling
· Exception handling
· Code quality 
· Type mismatch
· Lab – Type mismatch
· Function return values
· Unreleased resource
· Object-oriented programming pitfalls
· Memory and pointers
· Wrap Up 
· Secure coding principles 
· Principles of robust programming by Matt Bishop
· Secure design principles of Saltzer and Schröder
· And now what? 
· Further sources and readings
· C and C++ resources

Copyright ©2003-2024 Accelebrate, LLC. Some outlines may contain content from our courseware partners; such content is protected by these partners' copyrights. All trademarks are owned by their respective owners.
image1.png

