[image: ]

Introduction to Blazor WebAssembly
Course Number: ASPNC-110
Duration: 3 days
Overview
Blazor WebAssembly is a .NET Core web technology for hosting applications that can run your client-side C# code directly in the browser using WebAssembly.
In this Introduction to Blazor WebAssembly training course, attendees learn how to build UI apps leveraging the same component-based patterns popularized by libraries such as Angular and React, but using C# programming. Students learn how to reduce dependence on JavaScript UI libraries and frameworks and utilize JavaScript only when needed, not as the basis of their client-side applications. This course also uses an ASP.NET Core backend.
Prerequisites
All students must have:
· C# programming experience
· HTML, CSS, and JavaScript development experience
Materials
All Blazor training students receive comprehensive courseware.
Software Needed on Each Student PC
· Windows 10 or later with at least 8 GB RAM
· Visual Studio 2019 or later
· .NET Core 3.1 or later SDK
· LocalDB or another version of SQL Server
· Postman application
· Additional lab files that Accelebrate provides
Objectives
· Understand the Blazor platform
· Build UIs with components
· Utilize data binding and event handling
· Compose components
· Build Blazor pages and configure routing
· Deploy a Blazor WebAssembly application to production
· Consume server data via REST APIs
· Unit test Blazor apps
Outline
· Introduction 
· What is Blazor?
· Blazor Hosting Models
· What is Blazor Server vs. Blazor WebAssembly?
· What is WebAssembly?
· Browser Compatibility
· Web Assembly vs. JavaScript
· How does .NET Core / C# run in a web browser?
· Blazor WebAssembly Application 
· Project Template
· Create a New Application
· Hosting Blazor WebAssembly with a ASP.NET Core MVC Server
· Configuration
· Dependency Injection
· Environments
· Logging
· Handling Errors
· Debugging WebAssembly
· Razor Components and Data Binding 
· What is a Component?
· Creating a Data Model
· Binding the Data Model to the HTML
· Passing Arbitrary Attributes
· Handling Events
· Manually Trigger State Updates and Re-rendering
· Composing Razor Components 
· Decompose a Component into Smaller Components
· One-Way Data Binding
· Two-Way Data Binding
· Pass Data from a Parent Component to a Child Component using Parameters
· Pass Data from a Child Component to a Parent Component using Event Callbacks
· Use Keys to Optimize Performance
· Use Refs to Access DOM Elements
· Razor Component Libraries
· Razor Component Design Patterns 
· Parameters are Immutable
· Lift State Up
· Managing State in General
· Razor Component Forms 
· What is the purpose of Form?
· Collecting Data using a Form, Input, Select and Textarea Elements
· Explore Form Element Two-Data Binding
· Build Forms with the Blazor Edit Form Razor Component
· Explore the Concept of the Edit Context
· Use the Specialized Edit Form Controls 
· Input Text
· Input TextArea
· Input Select
· Input Number
· Input Checkbox
· Input Date
· Applying Validation to the Form
· Decorating the View Model with Validation Attributes
· Code Custom Validation Attributes
· Razor Component Pages 
· What is the Page model?
· Differences between Razor Pages and Razor Components
· Using a Razor Component as a Page
· Explore the Router Component
· Configuring Page Routing
· Route to Components from Multiple Assemblies
· Using Route Parameters
· Using the Query String
· Applying Authorization to a Razor Component Page
· Using Authorization within the Component Tree
· Using Server Data 
· ASP.NET Core MVC Web API 
· What is ASP.NET Core MVC?
· What is a REST API?
· What is an API Controller?
· Injecting the Http Client
· Exploring the Http Client
· Calling a REST API from a Blazor Component using the HttpClient
· Interacting with JavaScript 
· What is the JavaScript Interop?
· When is JavaScript needed?
· Synchronous vs. Asynchronous Calls
· How to call a JavaScript function from a Component
· How to call C# code from JavaScript
· Calling Static Methods
· Calling Instance Methods
· Organizing JavaScript Code within a Blazor WebAssembly App
· Explore JavaScript Ecosystem 
· Client-Side Libraries
· NPM & Yarn
· Webpack
· Useful Libraries
· Unit Testing 
· What is Unit Testing?
· Principles of Unit Testing 
· Defining a Unit
· Setup/Teardown
· Testing in Isolation
· Determining What to Test
· Code Coverage
· Test Frameworks
· Stubs, Mocks and Spies
· xUnit 
· What is xUnit?
· Testing Framework
· Facts vs. Theory
· Assertions
· Integration with Visual Studio
· Razor Components 
· What Should be Tested on a Razor Component?
· What is bUnit?
· Using bUnit with xUnit
· Setup and define components under tests in C# or Razor syntax
· Verify outcome using semantic HTML comparer
· Interact with and inspect components
· Trigger event handlers
· Provide cascading values
· Inject services
· Mock IJsRuntime
· Perform snapshot testing
· Conclusion

Copyright ©2003-2024 Accelebrate, LLC. Some outlines may contain content from our courseware partners; such content is protected by these partners' copyrights. All trademarks are owned by their respective owners.
image1.png
Accelebrat&%g

ACCELERATED LEARNING, CELEBRATED RESULTS ®




